건설이슈포커스

건설기업의 경쟁력 제고를 위한 공정 혁신 성공 사례 분석과 시사점

2011. 2. 23

김원태·이영환

서론	• 4
공정 혁신의 필요성	. 5
공정 혁신을 위한 이론적 고찰	10
성공 사례 분석 및 시사점]	14
맨음막	30

요 약

- ▶ 현재 국내외 건설 환경은 구매자 우위의 시장으로 기업의 차별화된 수주 전략 없이는 기업의 수익성 보장은 물론 지속성까지 위협받는 실정임.
 - 국내의 공급자 포화 상황과 해외의 후발 저임금 신흥 국가와의 경쟁 여건 등을 감안할 경우 단순한 가격 경쟁만으로는 수주 승산이 낮거나 출혈 수주가 불가피함.
 - 공기 단축 역량이 수주 경쟁력으로 직결될 수 있음을 고려할 때, 건설기업의 공정 혁신 필요성이 부각되고 있음.
- ▶ 영국과 국내의 건설 공사 기간을 비교한 결과, 공공 청사 건립 공사의 경우 국내 공사 기간이 영국에 비해 약 22% 더 길게 걸리는 것으로 조사됨.
 - 시설물 유형·사업 수행 조건·작업 제약 요소 등에 따라 적정 공기가 달라질 수 있다는 점을 인정하더라도 양국 건설산업의 엄연한 효율성 및 생산성 차이가 존재함.
- ▶ 본 연구는 국내 건설기업의 경쟁력 제고를 위해서 건설 사업 기간을 획기적으로 단축 한 성공 사례를 분석하여 그 시사점을 찾고자 함.
 - 공정 혁신의 필요성 및 그 수행 방법론에 대한 이론적 고찰과 함께 성공적인 공정 단축 사례 분석을 통해 공정 혁신을 위한 기본 방향을 제시함.
- ▶ 본 연구에서 살펴본 성공적 공정 혁신 사례들은 모두 25% 이상의 공정 단축 효과를 달성하였으며, 사업 비용 절감과 함께 안전 및 품질 측면에서도 우수한 성과를 거둔 것으로 평가됨.
 - 효율적인 생산 구조로의 변화를 꾀한다면, 공기 단축이 반드시 사업 비용 증가로 이어 지지 않는다는 사실을 확인하였음.
 - 검증된 기술과 철저한 관리가 전제된 공기 단축은 안전 및 품질 차원에서 반드시 부정적인 영향만을 미치는 것이 아님을 확인하였음.
- ▶ 성공 사례에서 파악된 국내 대형 건설기업의 생산 역량은 이미 고도화되어 있 거나, 실현되지 못한 잠재력은 충분한 것으로 해석할 수 있음.
 - 공기 단축에 성공한 사례들은 기존의 설계 기술 및 시공 공법을 대신해 새로운 접근을 시도한 혁신성을 공통적으로 보였음.
 - 생산 기술의 제고만으로는 획기적인 공기 단축이 불가능하며, 비기술적 관리 요소의 발전이 병행되는 생산 프로세스의 최적화 전략이 필요함.

Ⅰ. 서론

□ 논의 배경

- 건설기업의 대외 경쟁력 강화를 위해 갖춰야 하는 핵심 역량의 하나로 공정 혁신의 필요성이 부각되고 있음.
 - · 400억 달러 규모의 아랍에미리트 원자력 발전 사업에서 6개월 공기 단축 제안이 수 주 성공에 주효할 수 있었던 것처럼 건설기업의 해당 상품에 대한 공기 단축 역량은 곧 수주 경쟁력으로 직결될 수 있음.
- 국내 건설산업의 생산성은 선진국에 비해 여전히 열등한 수준으로 건설 생산 구조의 효율화가 요구되는 실정임.
 - ·국제 생산성 비교 조사나에 의하면, 건설업의 연평균 부가가치 노동생산성은 OECD 가입국 중심의 25개국 중 영국은 1위, 한국은 20위를 차지함.
 - ·이러한 국내 건설산업 전반의 낮은 생산성은 관련 법령과 제도를 포함한 건설 생산 시스템의 후진성에 더불어 생산 주체의 낮은 글로벌 경쟁력을 반증하고 있는 것으로, 생산 프로세스의 효율성을 제고할 수 있는 변화가 필요한 시점임.
- 국내 건설 생산 과정의 현실은 시공 단계의 소극적인 적정 공기 준수 개념에 머물러 있어 기획 및 설계 단계에서부터 사업 전 단계에 걸친 생산 공정의 단축으로 이어지 지는 못하고 있는 실정임.
 - · 기존의 전통적 공기 단축 시도는 해당 사업 차원에서 시공 작업 기간의 일시적인 단축에만 치중한 측면이 있으나, 획기적인 공정 혁신을 위해서는 사업 전 단계 걸친 유기적 통합과 기업 차원의 지속적인 프로세스 단축 시도가 필요함.
 - 현장 수준에서 야근 및 교대 등의 추가 노무 인력 투입이나 작업자를 압박하여 작업 기간을 단축하려는 돌관 공사 방식은 작업의 생산성 향상이나 공기 단축 효과에 근본적인 한계가 있음²⁾.

¹⁾ 한국생산성본부(2009), 생산성 국제비교, pp. 46~47

²⁾ 미국의 대표적인 공사비 정보 자료집 RS Means에 따르면, 단기간에 걸친 야근 작업의 생산성은 큰 변화를 보이지 않지만 4주를 경과하는 장기간의 야근 작업의 생산율은 일반 작업 대비 최대 55% 수준에 그침.

·따라서 프로젝트 라이프 사이클 전반에 걸친 생산 방식의 효율화를 추구하는 방향으로 공정 혁신 패러다임의 전환이 요구되는 상황임.

□ 연구의 목적 및 방법

- 본 연구는 국내 건설기업의 경쟁력 제고를 위해서 건설 사업 기간을 획기적으로 단축 한 성공 사례를 분석하여 그 시사점을 찾고자 함.
 - · 공정 혁신의 필요성 및 그 수행 방법론에 대한 이론적 고찰을 통해 사업 참여 주체 가 취해야 할 변화 대상을 조명함.
 - ·사례 분석을 통해 공기 단축의 결과, 주요 원인, 시사점을 조사함.

△ 건축 사업: 대규모 유통단지, 경기장 시설

△ 토목 사업: 초장대 교량

△ 플랜트 사업 : 원자력 발전소

Ⅱ. 공정 혁신의 필요성

1. 수요자 측면

□ 발주자의 사업 기간 단축 요구 증대

- 대규모 자금이 동원되는 대형 국책 사업의 경우에는 공기 단축 방안이 낙찰자 선정을 위한 주요한 평가 기준이 될 수 있음.
 - · 정부는 건설산업선진화방안(2009.3)의 일환으로 발주자에게 최고 가치(best value)를 제공할 수 있는 설계공모 · 기술제안형 입찰제도의 확대를 추진하고 있음.
 - ·1,000억원 공사를 선시공하여 1년 조기 준공시 편익은 약 50억~100억원으로 추정³⁾ 하고 있는 바와 같이, 사업 기간의 단축 여부는 곧 사업의 경제성에 직결될 수 있음.
- 해외 시장의 경우 기존의 표준 공기 개념을 파괴하는 무리해 보일 정도의 공기 단축 요구가 발주자에 의해 발생하고 있는 실정임.

³⁾ 국토해양부, 2008년 10대 재정운용계획 아젠다 정책추진방향

- · 플랜트 사업의 경우, 일반적으로 3개월 공정 단축은 약 3~4%의 사업 수익률을 향상 시키는 효과가 있는 것으로 알려짐⁴⁾.
- · 이는 공기 단축 결과가 수익성 있는 사업과 수익성 없는 사업을 구분하는 척도가 될 수 있다는 것을 의미함.
- ·이외에도 생산물 조기 양산을 통한 시장 선점, 긴급한 재난 복구, 건설 과정에서의 환경 파괴 최소화 등의 이유로 공기 단축이 요구됨.

2. 공급자 측면

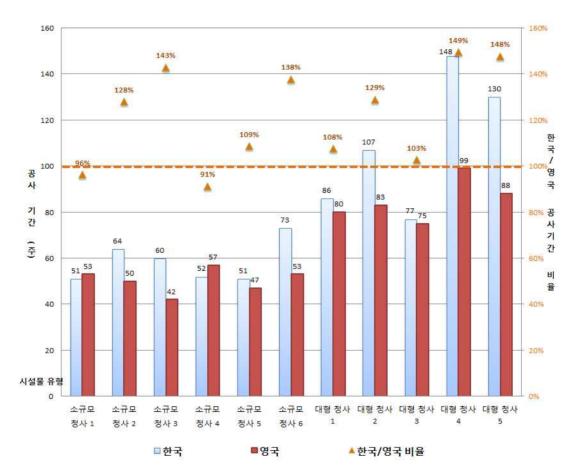
□ 공기 경쟁력이 곧 수주 경쟁력

- 해외시장 수주전에서 경쟁 우위를 차지하기 위해서는 건설 상품의 생산 주기를 단축 시키는 역량이 핵심 전략으로 부각되고 있음.
 - · 현재의 건설 시장은 발주자의 요구에 응해야 하는 구매자 우위 상황임을 고려할 때, 고객의 요구에 신속하게 대처하는 능력이 곧 수주 경쟁력으로 이어질 수 있음.
 - ·해외사업의 입찰자 평가 방식도 가격 중심에서 벗어나 가치 중심으로 이동함을 감안 할 때, 공기단축 요구를 기업의 성장과 생존을 보장하는 새로운 기회로 이용해야 함.
- 국내 건설산업이 생산 시스템의 효율화에 실패할 경우 후발 저임금 국가와의 수주 경 쟁에서 역전되는 상황이 발생할 개연성이 높음.
 - ·해외시장에서 국내 건설기업은 가격 경쟁력을 무기로 앞세운 중국, 터키, 인도 등 신 홍국 건설업체와의 경쟁에서 승산이 없거나 출혈 수주가 불가피한 상황임.
 - · 단축된 공기 제안과 같은 차별화된 수주 전략을 통해 후발 건설 업체와의 경쟁에서 도태되지 않도록 대비해야 하는 시급성을 인식해야 함.
 - ·이미 해외 선도적 건설사들은 기존의 전통적 프로젝트 수행 방식을 탈피하여 혁신적 인 공정 프로세스 개선을 진행 중임.
- 기업 입장에서도 공기 단축은 분양성 향상, 공사 원가 절감, 현금 흐름 개선 등을 통한 수익성 개선의 효과가 있음.

⁴⁾ P. F. Navarrete, W. C. Cole(2001), Planning, Estimating, and Control of Chemical Construction Projects, CRC Press, p.18

- ·건축 상품의 경우 최종 사용자의 조기 입주에 대한 요구가 점점 증대되고 있으므로 공기 단축을 통해 분양성을 개선할 수 있음.
- ·노무 투입 및 장비 임대 기간을 축소할 수 있으므로 공사 원가를 줄일 수 있는 동시에 자원 회전율을 증가시키는 이점이 있음.
- · 공정 및 준공 기일을 앞당기면 기성금 또는 준공금의 조기 수령을 통해 금융비용을 줄이거나 이자 소득 증대 등 부가 수익 창출과 현금 흐름 개선이 가능함.
- ·도심지 공사의 경우 교통·분진·소음 등에 기인한 현장 주변 거주인의 불편을 최단 기간으로 최소화할 수 있어 민원 제기 가능성을 줄일 수 있음.

3. 건설산업 측면


□ 한・영 공기 경쟁력 비교 : 경쟁 상대국에 열세

- 영국과 우리나라의 건설 공기 경쟁력 수준을 비교하기 위해 소규모 및 대형 청사 건물을 기준으로 건설 소요 기간을 비교함.
 - ·비교 방식은 국내 조달청에 계약 요청된 공사 자료5)와 영국의 왕립공인적산협회 (Royal Institution of Chartered Surveyors) 산하 건물비용정보서비스(Building Cost Information Service) 부문의 공사 기간 산정 프로그램6)에서 도출한 예측 값을 활용하였음.
 - ·동일 시설물이라 하더라도 발주 방식·계약 형태·공사 지역·작업 환경 등이 달라일 대일 단순 비교에는 어려움이 있으므로 양국 간의 거시적인 건설 공기 수준을 비교하는 목적으로 한정함.
- <그림 1>의 분석 결과와 같이, 비교 대상으로 선정된 국내 공공 청사 사업의 공사 기간은 평균 82주인 반면 영국 공사 기간은 평균 66주로 예측됨에 따라 우리나라의 공사기간이 영국에 비해 약 22% 더 오래 걸리는 것으로 나타남.

⁵⁾ 조달청이 발간한 공사유형별 공사비 분석(2008.6)과 공사유형별 공사비 분석(2007.3) 자료 중 공사비 금액은 예정가격 작성을 위한 조사 기준이며, 공사 기간은 착공 후 예정 공기일 기준임.

⁶⁾ BCIS 공사기간 예측 프로그램(Construction Duration Calculator)은 1991년부터 2008년 사이에 영국 각 지역에서 수행되었던 4,500여개 이상의 실적 사업 자료를 근간으로 구축한 예측모델임. 공사계약금액, 공사착수시점, 시설물 유형, 현장 위치, 계약 방식 등의 사업 변수를 입력하면 공사 기간 예측치를 산출하여 제공함.

- ·전체 11개 소규모 및 대형 청사 비교 대상 사업 중 9개 사업(약 82%)이 영국에 비해 공사 기간이 길었음.
- ·소규모 청사의 경우 국내 공사 기간은 평균 59주(최소 51주에서 최대 73주)였으며 영국은 평균 50주가 소요되는 것으로 예측되어 양국 간의 평균 공기 차이는 9주인 것으로 나타남.
- ·대형 청사의 경우 국내 공사 기간은 평균 110주(최소 86주에서 최대 148주)이며 영국 은 평균 85주로 예측되어 양국 간의 평균 공기 차이는 23주인 것으로 나타남.

<그림 1> 공공 청사 사업의 한·영 공사 기간 비교

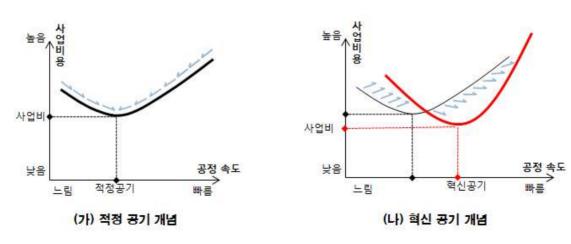
- 영국에 비해 국내 사업의 공기가 길었다는 점은 곧 국내 사업의 공기 단축 여지가 존 재하는 것으로 해석될 수 있음.
 - ·시설물 유형·사업 수행 조건·작업 제약 요소 등에 따라 적정 공기가 달라질 수 있다는 점을 인정하더라도 22%의 건설 공기 차이는 상당한 공기 단축의 가능성을 시사하는 것임.

· 양국 간의 건설 공기 차이는 시공 이전 단계의 업무 밀도, 설계 및 엔지니어링 역량, 시공 단계의 작업 생산성, 사업 관리 수준 등에 기인한 것으로 판단됨.

□ 건설 생산 구조의 효율화 도모 필요

- 건설 선진국과 비교한 우리나라 건설산업의 엄연한 효율성 및 생산성 차이를 극복할 수 있는 산업 차원의 혁신이나 발전 전략이 요구됨.
 - · 영국은 이미 1990년대 후반부터 건설재인식운동(Rethinking Construction)을 국가 산업 혁신 차원에서 추진해 왔음.
 - · 혁신 운동의 7대 목표는 10% 공기 단축, 예측도 20% 향상, 10% 생산성 향상 등을 포함하고 있음.
 - 혁신의 대상을 발주자로 바라보는 사고의 전환, 모범 사례의 발굴 및 전파, 수립 목표에 대한 지속적인 성과 관리 등이 강조됨.
- 이에 반해 국내 공공 건설 사업의 현실은 선진화되지 못한 정책 및 제도로 인해 여전 히 비효율적이거나 비경제적인 생산 구조에 머물러 있음.
 - ·대표적인 예로 장기계속계약제도에 근거한 공공사업은 예산 배분의 부적절성 및 재정 투자의 축소 등으로 상당한 공기 지연이 발생하고 있음7).
 - · 장기계속사업의 분산투자로 인해 간접비 증가로 야기된 해당 건설업체의 피해는 물론이고 총사업비 증가로 인해 사회 경제적 손실이 심각한 실정임.
 - · 또한, 생산 주체의 공기 단축을 유도하는 실효성 있는 유인책이 미흡하여 공기 단축을 위한 신기술 및 신공법의 개발과 적용이 부진한 상황으로 개선 조치가 필요함⁸⁾.
 - ·건설 생산 구조의 효율화를 도모해야 한다는 국가 산업 차원의 문제 인식과 관련 정책 및 제도 정비가 선행되지 않고서는 진정한 국가 산업 경쟁력은 제고될 수 없음.

⁷⁾ 대한건설협회가 조사한 361개 공공 건설 현장에 대한 실태(2009년 11월)에 따르면, 계약서상의 공사기간보다 평균 6.7년이 더소요되며, 예산 배정률도 적정 예산 대비 55%에 불과한 것으로 조사되었음.

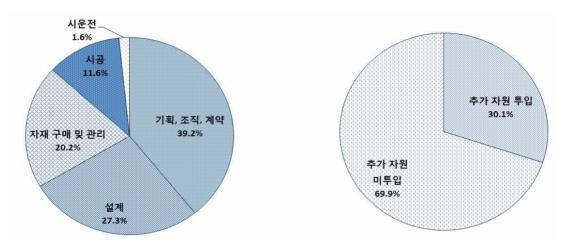

⁸⁾ 공기단축 복합건설기술개발 연구단이 실시한 설문조사(2008년 10월~2009년 1월)에 따르면, 실질적인 공기단축을 이루기 위해서는 △민원 발생에 관한 우려 △최저가낙찰제도 △설계단계시 공사기간에 대한 고려 미흡 △연차별 예산관리방식 △하도급 업체의 기술 부족 등에 대한 개선이 필요한 것으로 나타남.

Ⅲ. 공정 혁신을 위한 이론적 고찰

1. 공정 혁신을 위한 패러다임 전환

□ 적정 공기 준수를 넘어 혁신 공기 달성

- 기존의 공기 단축은 보편적으로 활용되어 온 사업 수행 구도 하에서 시공단계의 제한 된 공법 적용과 추가 자원 투입을 통해 작업 속도 및 생산 물량 증대 위주의 돌관 작 업 방식에 그치고 있음.
 - ·이러한 경우 건설 공기는 <그림 2> (가)의 공정 및 비용 곡선에서 하나의 고정된 목 표(적정 공기)로 제한되는 특성을 갖게 됨.
 - ·특히 실시 설계가 완료된 후 생산 주체가 개입되는 기존의 전통적 설계 시공 분리 방식의 경우, 시공자는 공기 단축에 대한 운신의 폭이 좁아지며 공기 단축의 범위 또 한 한정될 수밖에 없음.
- 기존의 관행적 틀을 깨는 사업 수행 체계와 건설 생산 프로세스상에 적절한 변화를 도모한다면, 공기 단축의 효과와 범위는 달라질 수 있다는 판단임.
 - ·<그림 2>의 (나)와 같이 본 연구에서 공정 혁신의 목표는 공정 및 비용 그래프 자체 를 이동하는 수준의 과감한 변화를 의미함.
 - ·이러한 건설 사업의 전 단계에 걸친 공기 단축 시도로 공기 단축의 범위(혁신 공기) 는 크게 확대될 수 있기 때문임.



<그림 2> 기존의 적정 공기와 본 연구의 혁신 공기 개념 비교

2. 공정 혁신을 위한 변화 대상

□ 사업 수행 방식

- 추가 공사비 부담을 최소화하면서 상당한 수준의 공기 단축을 이루기 위해서는 기존 의 사업 수행 프로세스 또는 생산 구조상에 근본적인 변화를 꾀하는 전략이 요구됨.
 - ·미 건설산업연구원(이하 CII) 연구⁹⁾에 따르면, 획기적인 수준의 공기 단축을 위해 사업수행 프로세스상에 변경이 요구되었던 부문은 사업 초기 단계에서 이루어지는 사업 계획이 압도적인 반면, 시공은 그 기여도가 상대적으로 낮은 것으로 조사된 바 있음.

<그림 3> 공기 단축을 위한 프로세스 변경 부문 및 추가 자원 투입 여부

- ·<그림 3>에 나타난 바와 같이 공기 단축을 위한 프로세스 변경 대상 부문은 기획·조직·계약이 39.2%를 차지하였고, 다음으로 설계 27.3%, 자재 구매 및 관리 20.2%, 시공 11.6%, 시운전 1.6%로 조사됨.
- · 공기 단축을 위해 기존의 프로세스 변경¹⁰⁾에 필요한 추가 자원 투입 여부에 대한 조사 결과는 69.9%가 불필요한 것으로 파악되었으며, 단지 30.1%만이 추가적인 자원¹¹⁾이 요구되는 것으로 확인됨.

⁹⁾ Construction Industry Institute by A. D. Songer, J. Diekmann (Dec. 2000), Re-engineering the EPC Process, pp.35~46

¹⁰⁾ 조사 대상 플랜트 사업에서 실제 일어난 프로세스 변경 사례는 △설계와 시공의 병행 작업 △시공 공종 작업간의 병행 작업 △설계 인력의 현장 투입 △과업 범위의 조기 확정(scope freezing) △표준화된 도면 활용의 최대화 △핵심 납품업자(vendor) 집중 관리 △인센티브 제도 도입 △신기술 사용 (3D 모델링) △제출물 검토 및 승인 기간의 단축, 제거 △즉시 시공 후 설계 변경 사후 정산 체제 △공장에서 시운전 사전 수행 후 기기 현장 반입 등

¹¹⁾ 추가 자원이 투입이 필요한 자원 변경(resource change)으로 분류된 항목은 상당한 양의 연장근무, 교대근무, 추가 노무자 및 관리자 투입, 인센티브 프로그램을 통한 생산성 개선 등을 포함함. 따라서 자원 변경 요소는 곧 사업 비용 증가와 직결되는 경향을 가지게 됨. 이에 반해 비자원 변경(non-resource change) 항목은 사업 비용과는 직접적인 영향이 없는 기존 프로세스의 변경을 의미함.

·기존의 비효율적 생산 프로세스를 변경하거나 낭비적 요소를 제거하는 관리 역량의 강화만으로도 상당 수준의 공기 단축이 가능할 수 있다는 것임.

□ 설계 및 엔지니어링 기술

- 설계 단계에서부터 공기 단축 가능성을 고려하여 시설물을 계획(design for schedule) 하고, 작업이 실행되는 시공단계의 시공성 및 안정성 등을 개선하는 설계 및 엔지니어링 기술의 강화 전략이 요구됨.
 - ·이를 위해 CII에서는 사업 초기 계획 단계의 중요성을 강조하며, 전체 엔지니어링 비용의 $10\sim35\%$ 를 철저한 사전 사업 계획(pre-project planning)을 위해 투입할 것을 권고하고 있음¹²).
 - · 과감한 공기 단축을 위해서는 기존의 관행적 설계와는 다른 시설물의 모듈화, 공장화, 기계화 생산 등이 요구되는데, 이를 위해서는 시공 단계 이전에 철저한 준비가 전제되어야 하기 때문임.
 - ·CII 연구¹³⁾에 따르면, 면밀한 시공성 검토(constructability review) 활동을 통해 전체 사업 비용의 4.3% 절감과 전체 사업 일정의 7.5% 단축이 가능함.
 - ·설계 오류 및 누락 등으로 인한 재작업을 방지할 수 있고, 과다 설계된 부분을 수정 하여 작업 물량을 줄일 수 있으며, 현장의 시공 안전성까지 향상할 수 있기 때문임.
 - ·특히 대형 고난도 프로젝트의 경우 가급적 설계 초기 단계에서부터 해당 공사의 전문가 및 유경험자를 설계팀에 포함시켜야 함.
 - ·설계 수행 진행 단계별로 설계 품질 관리를 강화할 수 있는 설계 검토 프로그램¹⁴⁾의 개발 및 운영 전략도 고려할 수 있음.

□ 시설물 생산 및 시공

- 주요 부재의 생산 및 설치 사이클을 최단기간으로 축소하기 위해 시설물 부재의 사전 제작화·공장화·기계화·자동화 생산 방식으로의 변화가 필요함.

¹²⁾ Construction Industry Institute(Apr. 2008), Best Practices for Design in Fast-Track Projects, p. 135

¹³⁾ Construction Industry Institute(2002), Implementation of CII Best Practices: Summary and a Self Assessment Guide.

¹⁴⁾ 미 육군 공병대(US Army Corps of Engineer)의 경우 Dr.Check과 같은 설계 검토(Design Review) 시스템을 운영하고 있음.

- ·대형 건설 사업의 경우 가용 장비의 성능이 시설물 부재 설계 및 시공 공법과 단위 작업의 공정 사이클을 결정하는 건설 기계화 시대가 도래할 것으로 판단됨.
- ·특히 앞으로 예상되는 현장 노임 단가 상승¹⁵⁾이나 기존 기능공의 고령화로 인한 인력 부족 문제 등을 감안할 때 기계화의 이점이 향후에는 더욱 부각될 것으로 예측됨.
- ·미국, 영국, 일본, 프랑스, 네덜란드 등 선진국의 경우 건설 장비에 대한 기술과 노하우가 상당하며. 국내 건설업계도 이를 벤치마킹할 필요가 있음.
- 상호 간섭 영향을 최소화하는 범위 내에서 병행 가능한 모든 작업을 다양한 차원에서 병행화하는 전략이 요구됨.
 - · 수직적인 병행(예 : Top-Down, Up-Up 공법), 수평적인 병행(예 : 지역 및 층별 Zoning, 공장과 현장 동시 작업), 공종간의 병행(골조와 마감의 동시 수행) 등을 예로 들 수 있음.
- 사업 기간 단축에 절대적인 핵심 공정 작업의 경우 사전 모의시험과 기능 인력의 훈 련을 통해 실 작업 이전의 시공 계획 및 준비를 철저히 해야 함.
 - 혁신적인 공기 단축 시도 과정에서 발생할 수 있는 생소하거나 의심적인 모든 공정 작업은 사전에 모형실험이나 노무자 작업 훈련을 통해 반드시 모의 연습을 거쳐 시 행착오를 최소화하는 전략이 필요함.
 - ·특히 공장 생산 가설 부재나 프리캐스트 부재 등이 최종 구조물로 일체화되기 전에 는 대형 안전재해의 위험성이 상존하고 있으므로 고위험 작업 시기별 집중도 있는 안전관리를 요함.
 - · 부적합 품질로 인한 재작업이나 대형 안전사고와 같은 시행착오는 공기에 치명적인 차질을 발생시킬 뿐만 아니라, 사고 처리 및 경위 파악 등에 따른 발주 및 유관 기관 의 작업 중단 지시 등으로 인해 공기 연장 문제로까지 확대될 수 있기 때문임.

□ 사업 관리

- 사업 전 단계 걸친 다양한 사업 참여 주체들의 유기적인 통합을 유도하여 건설 생산 공정의 효율성을 최대화할 수 있는 선진화된 사업 관리가 요구됨.

¹⁵⁾ 지난 10년간 우리나라의 건설 전체 직종의 시중 노임 평균 단가는 약 70% 올라 가파른 상승세를 나타내고 있음(2000년 9월 : 72,485원 ▷ 2010년 9월 : 123,031원).

- ·전체 사업 관리의 실질적인 효율과 효과를 배가시키기 위해서는 다양한 IT 정보화 기술 기반의 적극적인 활용이 필수적임.
- · 예컨대 사업관리정보시스템(PMIS), Building Information Modeling이나 4D Simulation 등의 건설 관련 정보화 기술 발전은 공정 혁신의 가능성을 높일 수 있음.
- · 첨단 정보화 기술에 힘입어 사업 단계 간 통합이 용이해질 수 있으며, 선 후행 작업 공정상의 신뢰도를 높이고, 불필요한 제고 최소화 및 자원 평준화 등 린(Lean) 건설 수행 환경이 조성되고 있는 것으로 파악됨.

Ⅳ. 성공 사례 분석 및 시사점

- 성공적인 공정 단축 사례로 지목된 바 있는 대표적인 건축·토목·플랜트 부문 벤치 마킹 사업들의 공정 혁신 결과·원인·시사점을 사업 수행자와의 면담 및 건설지 등의 관련 자료를 토대로 파악하고자 함.

1. 건축 사업의 성공 사례

(1) D 유통 단지 사업

□ 사업 개요 및 수행 결과

- D 유통 단지 개발 사업은 3개의 블록으로 구분하여 진행되었는데, 본 사례 조사의 대 상으로 선정한 D 블록의 사업 개요는 아래와 같음.
- ·본 사업은 연면적 약 27.5만m²의 국내 최대 상업 시설이지만, 주어진 공사 기간은 당초 24개월에 불과하였음.
- ·설계시공일괄(turn-key) 방식으로 발주되어 설계와 시공이 병행 수행된 패스트 트랙이 적용되었고, 짧은 공기 내에 성공적으로 수행되었다는 평가를 받고 있음.
- 패스트 트랙 공정에서의 실시설계기간 8개월이 전체 공사 기간 내에 중복되어 있으며, 실제 공사 기간은 총 26개월로 일반 공정과 비교하였을 때 6개월(19%)을 단축하였음.

- ·사업의 입찰 공고 이후 기본 설계를 포함하여 시설물 완공 시점까지의 전체 사업 공 정은 31개월이 소요되어 일반 공정에 비해 11개월(26%)을 단축함.
- 건설 비용 측면에서도 유사 사업 대비 약 9% 이상의 절감 효과를 거둠.
 - ·유사 규모의 상업시설 단지¹⁶⁾의 경우 단위 면적당 공사 비용이 약 1,269,000/m²이나, 본 사업의 경우 약 1,159,000/m²으로 우수한 비용 절감 성과를 달성한 것으로 평가할 수 있음.

<그림 4> 주요 달성 마일스톤

<丑 1>	・표준	공정고	ㅏ 달성	ㅣ 공정	Н	교
-------	-----	-----	------	------	---	---

사업 단계	표준 공정 ¹⁷⁾ [A] (월 / 기간)	달성 공정 [B] (월 / 기간)	비율 B]/[A] (%)
설계 단계	10개월	13개월 (3개월 중단) (2006.05~2007.06)	130%
- 기본설계	3개월	3개월 (2006.05~2006.08)	100%
- 실시설계	7개월	7개월 (2006.11~2007.06)	100%
시공 및 시운전	32개월	26개월 (2006.10~2008.12)	81%
합계	총 42개월	총 31개월 (2006.05~2008.12)	74%

¹⁶⁾ D 유통단지와 유사한 규모(연면적 263,000m²)의 상업 판매 시설의 도급 공사 계약 금액이 약 3,337억원이었음. 영국계 적산 전 문회사인 Davis Langdon, Seah사가 2010년 발표한 서울 지역의 쇼핑센터의 평균 건설비는 US \$1,530/m²(약 1,805,400원/m²)임. 17) 표준 공정 기간은 일반적인 사업 수행 환경 하에서 달성될 수 있는 기간으로 공정 전문가와의 의견을 반영한 값임.

□ 공정 단축 요인18)19)

- 초단기 공기 준수가 가능하도록 설계 단계에서부터 구조 및 공법이 사전에 고려되었으며, 설계 모듈화·부재 공장화 및 대형화·가설시설 최소화 등을 도모함.
 - ·지하 주차장과 매장은 모듈화로 설계하고, 주요 구조 부재 및 거푸집을 공장에서 사전 제작한 PC 복합화 구조방식을 적용함.
 - · 부재 설치의 효율성을 고려한 설계가 진행되어 대형 부재(단위 면적당 8매에서 3매로 감소)로 변경하여 양중 부하를 감소하고 조립 시간을 단축함.
 - ·소요 물량이 많은 지하층 주차장 바닥의 경우, 가설 구조가 불필요한 슬래브 무지주 공법인 프리캐스트 프레임(PC frame)과 철근 선조립 대형 거푸집 (PF/R)을 이용함.
 - · 공장제작부재는 일차적인 검수 작업이 제작장에서 완료될 수 있으므로 현장에서 요 구되는 감리·검측 항목 및 물량이 줄어드는 효과로 신속한 공정 진행에 유리하였음.
- 패스트 트랙 공정을 적용할 수 있는 설계시공 일괄 방식으로 발주되었고, 공종별로 다수의 계약 패키지로 분할하는 등 소화 공정 물량을 최대화하는 전략을 펼침.
 - · 기본설계로 실시설계적격자를 선정한 이후, 실시설계기간(7개월 소요) 동안 토공사를 병행할 수 있었기 때문에 초기 공정 단축이 주효할 수 있었음.
 - · 패스트 트랙에서의 적기 도면 공급과 최신 도면 유지 및 관리를 위해 웹베이스 캐드시스템(Buzzsaw)을 활용하였음.
 - ·넓은 층 면적으로 인해 마감 공사의 경우 구역별 다수의 하도급 계약 패키지로 분할 발주되어 공정 진척률을 향상시킴.
- 사전 예측을 통한 안정된 공정 추진, 만회 공정 대책 수립 등이 이루어질 수 있도록 합리적인 공정 관리 시스템을 운영함.
 - ·지하층 6개 구역, 지상층 3개 구역으로 분할하였으며, 층당 실 작업일을 지하층 18일, 지상층 7일 사이클 공정으로 진행하였음.
 - ·PC 공사의 경우, RFID 카드를 이용하여 자원관리의 효율성을 제고하였고, PC부재의 발주·제작·출하·입고·설치 정보를 온라인 웹상에 구축된 모델에서 실시간으로

¹⁸⁾ OO공사(2007), OOO 유통단지 이주전문상가

¹⁹⁾ OO산업(2009), OOO 유통단지 이주전문상가 다블럭 건설기록지

구현하여 원활한 진도관리를 도모함.

- ·핵심 공종의 경우 야근 작업조 및 교대 작업조를 투입하여 돌관 작업 체제로 수행하였음.
- 현장 적용 전에 모의 성능시험 실시, 사전 시공성 검토 등을 통해 재작업을 방지하고, 현장 안전 관리 측면에서도 무재해 준공이 가능하였음.
 - ·누수·소음·진동·차음 문제 발생 소지가 있는 PC 복합화 공법 적용시 모의 성능시험(mock-up test) 시행으로 공기 차질로 확대될 수 있는 문제를 미리 차단하였음.
 - · 공기 단축에 핵심적인 PC 공사의 양중 효율을 고려하여 6기의 타워크레인을 양중 범위가 중첩되도록 배치하였음.
 - ·시공 단계별 3D 모델링을 구현하여 설계 도면상의 문제점을 사전 발췌하고 PC 부재의 제작 오류를 최소화하였음.
- 공기 단축에 절대적인 영향을 미치는 주공정 경로상의 작업 중 시공 초기 단계의 선 행 공정 작업들의 단축에 집중하였음.
 - · 선행되는 토공사 · 골조공사 · 외부마감공사 기간의 단축을 통해 후속되는 내부마감이 조기에 착수될 수 있도록 계획함.
 - ·토질 기술자, 구조 기술자 등이 설계 단계에 개입하여 안전하고 합리적인 토공사 및 골조 공사의 개념이 수립될 수 있도록 하였음.
 - · 외부마감 공사의 조기 완료는 내부 마감 공사를 가능케 하는 전제 조건이 되므로 골 조 작업층과 외부 마감 공종 간의 차이를 최소화할 수 있도록 추진함.

(2) S 경기장

□ 사업 개요 및 수행 결과

- 2002년 월드컵 개막 경기장인 S 경기장 건설 사업은 전국 10개 경기장 건설 사업 중하나로, 사업 및 시설물 개요는 아래와 같음.
 - · 1997년 외환금융 위기에 따른 재정 부족 문제와 부지 선정 지연 문제 등으로 최종 신축 결정이 난 1998년 3월 이후 예상 준공일인 2002년 2월까지 약 48개월 내에 기

본 설계, 실시 설계, 시공, 시운전 등을 모두 마쳐야 하는 사업 공기 압박이 매우 큰 상황이었음.

- ·이에 본 사업은 설계 시공 일괄 방식으로 발주되었으며, 국내 최초로 건설사업관리 용역 계약을 통해 노출된 예산 및 공기 관련 리스크를 성공적으로 관리하였다는 평 가를 받고 있음.
- 설계 시공 병행 방식에 의해 진행된 본 사업의 주요 달성 마일스톤은 <그림 5>와 같으며, 일반 공정과 대비한 달성 공정의 비교는 <표 2>와 같음.
 - ·기본 설계의 경우 3개월 만에 완수하였으며, 실시 설계의 경우 12개월이 소요되어 전체 설계 기간은 25%(5개월)의 단축 효과가 있었음.
 - ·전체 시공 기간은 38개월이 소요되어 유사 사업의 평균 공기인 43개월과 비교하여 약 12%(5개월)를 단축하였음.
 - ·사업의 입찰 공고 이후 기본 설계부터 시설물 완공 시점까지의 전체 사업 공정은 42 개월이 소요되어 일반 설계 시공 분리 방식으로 수행된 유사 사업 대비 약 33%(21 개월)를 단축하는 성과를 거둠.

<그림 5> 주요 달성 마일스톤

사업 단계	일반 공정 ²⁰⁾ [A] (월 / 기간)	달성 공정 [B] (월 / 기간)	비율 [B]/[A] (%)
설계 단계	20개월	15개월 (1998.6~1999.9)	75%
- 기본설계	11개월	3개월 (1998.5~1998.9)	25%
- 실시설계	9개월	12개월 (1998.9~1999.9)	133%
시공 및 시운전	43개월	38개월 (1998.10~2001.12)	88%
합계	총 63개월	총 42개월 (1998 6~2001 12)	67%

<표 2> 일반 공정 대비 달성 공정 비교

□ 공기 단축 요인21)22)23)

- 전담 관리 조직 구성과 사업관리용역단의 전문적인 사업 관리 역량을 통해 공기 단축을 실현함.
 - ·시행 주체인 서울특별시 산하에 「월드컵기획단」 상설 조직을 구성하여 건설과 운영을 전담토록 하였음.
 - ·건설 기간 부족과 국제축구연맹(FIFA)의 까다로운 시설물 기준을 충족하기 위해 국 내 공공공사에서 처음으로 건설사업관리 용역 계약을 체결하여 전문가 집단의 기 획·설계·시공·유지관리 전반에 걸친 지원을 받음.
- 사업 초기에 지체된 시간을 만회하고, 압축된 공기 내에 완공하기 위해 패스트 트랙을 적용한 공기 단축을 시도하였음.
 - ·패스트 트랙의 적극적인 시행으로 초기 공기가 약 4개월 단축되는 성과가 있었음.
 - · 토공사, 기초 및 지하구조물, 골조, 마감/전기/설비 등 각 단계별로 진행된 실시 설계 와 시공 일정관리가 이루어짐.
- 공기 단축에 결정적인 골조 작업의 조기 완료에 유리한 구조물 설계를 원칙으로 수행하였음.

²⁰⁾ 일본 사이타바 경기장, 요코하마 경기장, 나이가타현 종합스타디움, 시즈오카현 종합스타디움의 공정 기간을 평균한 것임.

²¹⁾ 이복남 외(2005.8), 국내 용역형 CM/PM 시장 활성화를 위한 개선 방안, 한국건설산업연구원, pp. 15~17

²²⁾ 서울특별시(2002), 서울월드컵경기장, CA Press 현대건축사, pp. 57~112

²³⁾ 한국건설관리학회(2005.12), 건설사업관리 적용 사례집, 건설교통부, pp. 54~61

- · 관람석 스탠드는 곡선 대신 사각형 직선화 설계로 시공성을 크게 향상시켜 공기 단축 에 일조함.
- · 공기 준수를 위해 스탠드 상부는 프리캐스트 콘크리트 구조, 스탠드 하부는 철골 구조, 지하층 구조물은 콘크리트 구조인 복합 구조 시설물로 계획됨.
- 설계 단계에서는 설계의 적정성 검토, 설계 일정 관리, 가치 공학, 시공성 검토 등을 수행하여 공사 일정에 차질이 발생하지 않도록 조치함.
 - ·외국인 자문단을 포함한 각 분야별 전문가들을 설계 초기부터 참여시킴으로써 발주 자의 요구 성능이 충실히 반영된 설계 도서를 확보함.
- 사업 관리의 핵심 부분으로 종합관리 능력을 제고하고, 신속한 의사결정을 촉진할 수 있는 사업정보관리통합시스템(PMIS)을 구축 운영함.
 - ·사업 초기부터 핵심 사안 중심의 결론을 신속하게 도출하여 사업 목표를 조기에 확정하려는 노력이 기울여집에 따라 후속 단계에서의 공기 지연 리스크를 배제하였음.
- 일시적인 작업 중단을 야기할 수도 있는 안전 재해와 품질 관련 문제 발생을 사전에 차단하였음.
 - · 착공에서 준공까지 완벽한 안전 관리를 통해 무재해 사업으로 완수함.
 - ·품질관리 측면에서는 면밀한 사전 검토를 통해 시행착오를 최소화하며, 재시공 사례를 발생시키지 않도록 함.

2. 토목 사업의 성공 사례

□ 사업 개요 및 수행 결과

- 인천대교는 인천국제공항과 송도국제도시를 잇는 세계 5대 해상 사장교임. 인천대교 와 동일한 사장교 형식의 S대교 및 인천대교의 사업 개요는 <표 3>과 같음.
 - · 인천대교 사업은 해외 및 민간 자본을 유치하여 국가 재정 부담을 줄이고, 민간의 효율적인 사업 추진 체제를 도입하기 위해 BTO²⁴⁾ 방식을 선택함.

²⁴⁾ Build-Transfer-Operate 사업은 사업 완공 후 소유권을 발주자에게 귀속되고 사업 투자가는 양허 기간동안 시설물을 운영하여

- ·최단기간 내에 시설물 완공 및 운영을 통해 투자 재원을 최소화하는 동시에 투자금을 조기 환수하려는 민간 투자의 특성으로 52개월의 초단기 공정 목표가 설정되었음.
- 민자 사업 최초로 시공사가 개입하지 않은 순수 금융 투자자로 구성되었으며, 시공사 선정 과정에서도 민자 사업 최초로 경쟁 입찰을 통해 기술·공정·일반·혁신 등을 평가하여 건설 과정의 투명성과 효율성을 제고하였음.
- ·국내외 유사 초장대 교량과 비교할 경우 획기적인 수준의 공기 단축 성과를 달성하여 당초 계획대로 2009년 10월 개통되었음.

구분	S 대교	인천대교		
총길이	7,310m	12,343m		
교량 형식 (길이)	사장교 ²⁵⁾ -케이블 (990m) PSM ²⁶⁾ 교-연속 PC Box 거더교 (5,820m) FCM ²⁷⁾ 교-장경간 PC Box 거더교 (500m)	사장교-케이블 (1,480m) 고가교-PC Box 거더, FSLM (8,400m) 접속교-장견간 PC Box 거더, FCM (1,778m) 영업소-PF빔 (685m)		
주탑 높이	182m(사장교)	230.5m(사장교)		
도로폭	31.4m (왕복 6차선)	33.4m (왕복 6차선)		
투입 물량	연인원 220만명, 장비 45만대 철근 12만톤	연인원 230만명, 장비 40만대 철근 13.5만톤		
총사업비	약 6,800억원	12,600억원(민자구간: 12.343km) 8,000억원(국고구간: 9.04km)		
사업수행방식	설계 시공 분리 수행 방식	BTO (Build-Transfer-Operate) 설계 시공 일괄 수행		
공사 기간	1993.11~2000.11 (84개월)	2005.7~2009.10 (52개월)		

<표 3> 장대 교량 사례의 개요

- 유사 사업과 비교하여도 공기 단축 및 사업 비용 측면에서 매우 성공적인 사업으로 평가되고 있음.
 - · 약 7.3km인 S대교는 84개월의 공사기간이 소요되었으나, 약 12.3km인 인천대교는 52 개월이 소요되어. 단순 비교상으로도 약 62%(32개월)의 단축 효과가 있음.
 - ·사업 비용 측면에서도 유사 교량인 S대교와 비교시 약 11% 이상의 절감 효과를 창출하여 경제적인 건설 사업임이 확인됨.

투자금과 수익을 환수하는 방식임. 인천대교 사업에서는 시행사가 30년간 인천대교를 운영한 후, 한국 정부에 이관토록 계약 체결함.

²⁵⁾ 사장교(Cable Stayed Bridge)는 케이블로 상판을 비스듬히 매달아 지탱하는 교량임. 대형 선박의 항로 폭과 넓이를 확보하기 위한 장대교 건설에 적합한 구조 형식임.

²⁶⁾ PSM교(Precast Segment Method Bridge)는 분할된 단위 상부 부재를 제작장에서 제작 후 현장으로 이동 후 가설 장비로 거 치 후 사후 인장(Post-tension)하여 완성하는 구조 형식임.

²⁷⁾ FCM교(Free Cantilever Method Bridge)는 교각을 중심으로 양측에 캔틸레버 구조로 시공되는데 200m 정도의 교량 폭에 적절한 구조 형식임.

·기 수행된 유사 장대교량 사업의 물가 상승률²⁸⁾을 고려한 km당 단위 공사 비용은 약 1,130억원/km이나, 인천대교의 경우는 약 1,020억원/km이었음.

□ 주요 공기 단축 요인29)30)

- 과거의 유사 프로젝트와 구분되는 가장 큰 인천대교 사업의 특징은 설계와 시공을 병행하여 진행하는 패스트 트랙 방식을 적용한 것임.
 - •전체 사업을 20개 설계 단위(design package)로 구성하고, 약 2년간의 설계 기간 동안 시공 단계와 중첩 기간을 가지도록 하여 각 설계 단계별로 해당 시공 작업의 조기 착수가 가능토록 하였음.
 - · 2005년 2월 전체계 해석을 포함한 사장교, 접속교, 고가교 기초 공사 일부분의 상세 설계에 들어가, 2005년 7월에 설계 승인을 받아 교량의 말뚝 공사가 조기에 착수될 수 있었음.
- 공기 단축은 교량 시공 기간을 최대한 줄일 수 있는 대형화된 블록 부재를 공장에서 일체형으로 선제작한 후 현장에서 가설하는 프리캐스트(pre-cast) 공법이 주효함.
 - ·국내 최대의 피씨 하우스(PC-house) 제작(1,682톤, 34.6m), 국내 최대의 FSLM(1250톤, 50m), 국내 최대의 강교 대블록(2,724톤, 112.7m), 국내 최초의 크로스 빔(cross beam: 1,600톤, 31.6m) 등의 대형화 부재를 이용한 프리캐스트화에 성공하였음.
 - · 8.4km 길이에 해당하는 고가교 건설의 경우, 표준 길이 50m · 폭 16m · 두께 3m · 중량 1,250톤 규모의 총 336개 대형화된 단위 부재를 이용한 FSLM³¹⁾ 공법³²⁾을 적용하여 33개월 내에 시공 완료함.
 - ·육상에서 제작된 고가교 및 접속교 박스 거더 상판 부재는 해상 크레인, 특수 제작된 운송 바지와 캐리어, 가설 거더 등을 통해 설치되었음.

²⁸⁾ 생산자 물가지수 (2000년 91.0과 2009년 10월 110.9)를 이용해 21.87%의 상승률을 적용함.

²⁹⁾ 김화수(2007.6), "인천대교, 어떤 요소가 공기 단축에 영향 미치고 있나", 건설저널, 한국건설산업연구원.

³⁰⁾ 인천대교 홈페이지, http://www.incheonbridge.com

³¹⁾ Full Span Launching Method 공법은 교각과 교각 사이의 한 단위 전체를 공장에서 사전 제작하고 현장에 일괄 가설하는 공법임.

³²⁾ 일반 교량에서의 PSM 공법 적용시 단위 부재의 표준 길이는 보편적으로 3m이며 중량은 60~80톤 규모임.

- 시공 중 안전성 확보와 공기 단축이 가능한 다양한 엔지니어링 해석 및 시공 관리 기술이 도입되었음.
 - ·사장교 주탑의 경우 4차원 형상 관리 기술³³⁾, 자동 상승 시스템 거푸집 등을 적용하여 4m 1 Lot을 3일 사이클로 진행, 계획 대비 3개월 공기 단축을 실현함.
 - ·사장교 케이블 가설의 경우 정밀 구조 해석, 측량 및 계측 시스템 구성 기술, 오차 보정 기술 등 케이블 가설시의 사고 위험성을 제거할 수 있는 선형관리기술이 적용 되었음.
 - ·내풍 안전성 확보를 위한 해석 기술, 대블록 가설을 위한 임시 교각(bent) 설계 및 시공 기술, 사장교 케이블의 진동을 제어하기 위한 댐퍼의 해석 및 설계 기술 등이 확보됨에 따라 목표 형상이 계획대로 구현됨.
- 공사비 절감과 획기적 공기 단축이 가능한 신공법이 개발되었고 소요 부재 생산의 자 동화 생산 라인을 도입하였음.
 - · 교량 상판 제작시 9일이 소요되는 포스트 텐션(post-tension)을 대신하여 세계 최초 로 종횡 양방향 프리 텐션(pre-tension) 장비를 개발하여 2일 사이클을 가능케 함.
 - · 교각 기초에 투입되는 약 4,000여개에 달하는 국내 최대 물량의 대구경 현장 타설 콘 크리트 말뚝(RCD)을 최단 기간 내에 소화하기 위해 세계 최초로 철근망(rebar cage) 자동화 설비를 개발하였음.
 - · 철근망 생산 자동화 설비를 통해 제작 기간은 1/3 수준으로 단축되었고, 투입 인원은 50% 이하로 줄어드는 효과를 거둠.
- 원활한 시공 공정 추진에 장애가 될 수 있는 설계 품질 문제를 사전에 차단하기 위해 3단계에 걸친 설계 검토 및 승인 과정을 거쳤음.
 - ·설계 감리에 승인을 득하기 전에 시공사 조직 내부에 설계 내용을 검토하는 독립된 조직(contractor's check engineer)을 구성하여 설계의 품질 향상에 기여함.
 - ·국제적 수준의 설계 기준(AASHTO LRFD)을 적용한 사장교 설계 과정에서 설계 검 토 과정이 지연되어 후속되는 주공정 시공 작업에 악영향을 초래할 수 있었으나, 사

^{33) 63}빌딩 버금가는 238.5m 높이의 주탑 시공을 위해 연직 횡 교축 3차원 방향의 변형 및 시간 흐름에 따른 장기 변형까지 제어할 수 있는 기술

업관리자, 금융권 기술 자문단, 책임 감리 등이 공기를 단축할 수 있는 공법을 고안 하여 적기 준공을 가능케 하였음.

3. 플랜트 사업의 성공 사례

□ 사업 개요 및 수행 결과

- 신월성 원자력 발전소 1&2호기 주설비 건설 사업은 현재 건설 중인 8기 원자력 발전소 중 하나로서 사업 및 시설물 개요는 아래와 같음.
 - ·건설 인허가 승인 후 진행되는 최초 콘크리트 타설 시점부터 상업 운전 시설 개시 시점까지의 기간이 최초의 고리 1호기 사업은 69개월이 소요된 반면, 신월성 원전 사 업은 52개월의 공기 내 완수를 목표로 진행 중임.
 - · 막대한 공사비가 소요되어 공기 단축에 대한 유인이 큰 만큼, 그동안 공기 경쟁력을 증진시키기 위한 다양한 시도가 진행되어 원전 선진국과 비교하여도 국내 원전 사업의 공기 경쟁력은 우수한 상태로 평가받고 있음.
 - · <표 4>에 나타난 바와 같이 그동안 국내 원전 사업의 공사기간은 지속적으로 단축 되고 있는 추세를 보이고 있음.
 - · 강력한 발주자 PM 전담 조직이 구성되어 있으며, 필요시 종합설계계약자(A/E)가 사업과리 업무를 지원함.
 - ·사업 발주자-설계자-시공사 통합 사업 계획 조직이 운용되고 있으며, 종합설계계약 자의 통합사업공정표 개발시 발주자 및 시공자가 공동 참여하고 있음.

<표 4> 국내 원전의 호기별 공사기간

구분	영광	영광	울진	울진	영광	영광	울진	울진	신고리	신고리	신월성
	3호기	4호기	3호기	4호기	5호기	6호기	5호기	6호기	1호기	2호기	1&2호기
공기*	63개월	67개월	61개월	74개월	59개월	61개월	58개월	55개월	53개월	53개월	52개월

주 : * 최초 콘크리트 타설 시점부터 상업운전 개시 시점까지의 기간 자료: 한국수력원자력(2007), 꿈꾸는 에너지 아름다운 미래, p. 470

□ 주요 공기 단축 요인34)35)36)

- 한국표준원전(OPR1000) 설계 개선 사업을 1998년부터 3단계에 걸쳐 진행하여 경제성, 안전성, 시공성, 운전성 향상을 지속적으로 도모하였음.
 - ·1단계 사업에서는 기존의 원전 운영 및 보수회사, 시공회사, 제작회사, 설계회사가 설계 개선 사항을 도출해 개선형 한국표준원전에 적용하기로 결정함.
 - · 2단계 사업에서는 채택된 항목을 신규원전에 반영하기 위해 기본설계의 개발과 설계의 시현성 검증, 인허가 기술검토, 신규원전 적용 전 사전 검토가 필요한 역무 및 설계개선 과제 검토 등이 추진되었음.
 - · 신고리 1&2호기 사업을 대상으로 설계 개선 3단계 사업을 착수하여 상세 설계 수준 의 고도화를 제고하였음.
 - ·이러한 개선된 표준원전 모델의 기본 설계 및 상세 설계 자체가 패스트 트랙 방식이 적용될 수 있는 기반이 되었음.
- 표준화된 노형 설계에 따라 반복되어 시공되는 원전 사업의 경험 축적의 이점을 최대 한 이용하였음.
 - · 신월성 1&2호기의 경우, 동일한 표준 모델로 시공되었던 신고리 1&2호기를 참조 발전소로 향상된 설계 및 시공 개념을 적용하였음.
 - ·시운전 참여 및 경험 축적을 위해 선행 호기인 신고리 1&2호기 사업에 인력을 파견 하였고, 상온수압시험의 조기 착수를 위해 현장 지원 방안을 모색하여 계통인계 전담 조직을 구성하였음.
 - ·시공 및 운영의 편의성을 개선하기 위해 설계 최적화 및 합성 구조물 공법 등 신공 법을 확대 적용하였음.

³⁴⁾ 한국수력원자력(2007), 꿈꾸는 에너지 아름다움 미래

³⁵⁾ 한국수력원자력(2010), 원자력발전백서

³⁶⁾ 한국전력기술(2002), 미래 원자력발전소 설계, 제작, 및 건설비용 절감을 위한 신기술 개발, 과학기술부

- 건설 공정 최적화를 목표로 공기 단축이 가능한 다양한 신기술 및 신공법들을 확대 적용하여 건설 중임.
 - · 토목 공종의 경우 냉각수계통 취배수 축조 공사에 침매함(123개의 침매함) 육상 제작 및 해상 거치 공법을 적용하여 공기 단축, 시공성 향상, 비용 절감을 도모함.
 - ·건축 공종에서는 접이식 전천후 가설 지붕 설치, 격납건물 라이너 모듈 시공, 돔 구조물(Dome Liner) 2단 시공, 나사식 기계적 철근 이음 방식 등을 적용하여 공기 단축과 원가 절감을 실현함.
 - ·설비 공종의 경우, 원자로냉각재 배관(RCL) 중간관 용접과 원자로내부구조물(RVI)의 병행 시공을 통해 절대 공기를 2개월 단축시킦.
- 발주기관과 종합설계사는 향후 신규 APR+ 노형 건설에서 최초 콘크리트 타설시점부터 연료장전까지의 기간을 40개월 이하로 줄이는 과감한 목표를 수립하고, 아래와 같은 공기 단축 방안을 검토하였거나 진행 중에 있음.
 - 구조물 전체 또는 일부를 선제작하거나 선조립하는 모듈화 공법 확대
 - · 주요 대형기기를 대용량 크레인을 이용하여 건물 상부를 통해 직접 설치하는 수직반 입공법(over-the-top) 검토
 - •격납 용기, 배관 등에 균일한 고품질의 무인 자동 용접 시스템 적용 확대
 - ·4D 개념의 공정개발 및 시뮬레이션을 통한 건설 공정 최적화 기술 개발

4. 요약 및 주요 시사점

- 성공 사례 조사 결과를 요약하면 <표 5>와 같음.

<표 5> 성공 사례 조사 요약

구분	성공 사례 1 (건축)	성공 사례 2 (건축)	성공 사례 3 (토목)	성공 사례 4 (플랜트)
- 공기 단축	• 기본설계에서 준공까지 31개월 소요 (약 26% 단축)	•기본설계에서 준공까지 42개월 소요 (약 33% 단축)	• 전체 시공 기간이 52개 월 소요 (약 62% 단축)	• 최초 콘크리트 타설부 터 상업운전 개시까지 52개월 소요 (약 25% 단축)
건설 비용	• 유사 사업 대비 약 9% 절감	• 확인 불가	•유사 사업 대비 약 11% 절감	• 확인 불가
안전 품질	• 사전 성능 시험 실시로 재작업 방지 • 무재해 준공 완수	• 완벽한 안전관리로 무 재해 사업으로 완수	• 사전 작업 훈련 실시 등으로 재작업 및 안전 재해 방지	• 철저한 품질 검증 과정 을 거쳐, 세계 최고 수 준의 가동률 시현
사업 수행 방식	•설계 시공 일괄 발주 •실시 설계가 진행되는 동안 토공사를 진행한 패스트 트랙 적용	•설계 시공 일괄 발주 •토공사, 기초 지하 골 조, 지상 골조, 마감 등 을 각 단계별로 패스트 트랙 적용	• 민간 자본을 유치(BOT) • 20개의 설계단위로 구 성된 패스트 트랙 적용	•설계 시공 분리 발주 •시설물 및 공종별 패스 트 트랙 적용
설계 및 엔지 니어 링	• 지하주차장 및 매장의 모듈화된 설계 • 대형부재로 계획 변경 (단위 면적당 8매에서 3 매로 축소) • PC 복합화 구조물로 설계 • PC부재 설계시 3D 모 델화로 간섭사항 사전 발췌 • 최신도면 관리를 위한 시스템 가동	소탠드 프리캐스트 콘 크리트 구조, 스탠드 하 부 철골 구조, 지하 콘 크리트 구조인 복합 구 조물로 계획 스탠드 직선화로 시공 성 개선과 공기 단축 설계의 적정성 검토와 가치 공학 실시 각 분야별 외국인 자문 단 설계 초기에 참여	• 국내 최대 대형화 프리 캐스트 블록 부재 (PC-House, FSLM, 크로 스 빔, 강교 대블록 등) 로 설계 • 국제적 수준의 설계 기 준(AASHTO)을 적용 • 내풍 안정성, 진동 제 어, 정밀 구조 해석, 4차 원 형상 관리 등의 선 진 엔지니어링 설계 기 술 도입 • 3단계에 걸친 설계 검 토 및 승인 과정 거침	지속적인 설계 개선 작업을 추진하여 표준원전 모델의 기본설계 및상세설계 완성도 높임. 기수행된 참조 모델을활용하여 설계 개념 향상 시공 및 운영의 편의성확보를 위한 설계의 최적화 시도 및 합성 구조물 개발 건설 공정 최적화를 위한 4D 설계 및 시뮬레이션 기술 개발
생산 및 시공	프리캐스트 부재 및 선조립 대형 거푸집 등의 사전 공장 제작 및 현장 설치 현장 가설시설 작업 최소화 PC 부재의 양중 효율증진을 위한 타워크레인 중첩 배치 야근 및 교대조 투입을통한 돌관 작업 체제	 프리캐스트 부재 사전 제작 후 현장 설치 시공 기간 동안 돌관 체제로 수행 	프리캐스트 부재를 일체형으로 선제작 후 현장에 일괄 가설 대형 부재 운반 및 가설을 위한 초대형 해상크레인, 특수 제작 운송바지 및 캐리어 활용 교량 상판에 종횡 양방향 Pre-tension 기술 개발로 2일 사이클 제작자동 상승 시스템 거푸집 활용 철근망 자동화 생산 설비 개발 및 사용	취배수 시설의 침매함 육지 제작 및 해상 거 치 공법 적용 원자로 냉각제 배관 및 내부구조물의 병행 시 공 격납건물 라이너 모듈 화 시공 돔 구조물 2단 시공 나사식 기계적 철근 이 음 방식 전천후 가설 지붕 설치
사업 관리	• 발주자 PM 전담 조직 구성	 발주자 PM 전담 조직 구성 외부 사업관리(CM) 용역 활용 사업정보관리통합시스템 구축 운영 	•외국 투자가인 발주자 PM 전담 조직	발주자 PM 전담 조직 필요시 종합설계사의 사업관리 업무 지원 사업 발주자-설계자-시 공사 통합사업계획 조 직 운용

□ 사례 분석 결과의 시사점

- 국내의 성공적 공기 단축 사례들은 모두 25% 이상의 공정 단축 효과를 거둔 것으로 나타났으며, 사업 비용 측면에서도 유사 사업과 대비해 절감된 사업이 존재함.
 - · 효율적인 생산 구조로의 변화를 꾀한다면, 공기 단축이 반드시 사업 비용 증가로 이어지지 않는다는 사실을 확인하였음.
- 안전 및 품질 차원에서도 무재해 발생과 작업 품질 개선 등의 성과를 거둬 일반 표준 공기를 준수한 사업과 비교해 안전 및 품질의 저하 요인은 발생하지 않았음.
 - · 검증된 기술과 철저한 관리가 전제된 공기 단축은 안전 및 품질 차원에서 반드시 부 정적인 영향만을 미치는 것이 아님을 입증하고 있음.
- 기존에 알려진 국내 건설산업의 낮은 생산성 통계와는 상반되게 성공 사례에서 파악 된 작업 생산성은 높은 것으로 나타났음.
 - ·국내 대형 건설기업의 생산 역량은 이미 상당 수준 고도화되어 있거나, 실현되지 못한 잠재력은 충분한 것으로 해석할 수 있음.
 - · 다만, 성공 사례 사업의 일부에서는 여전히 현장 작업 시간의 증대를 통한 돌관 작업 체제가 유지되고 있는 것으로 나타나 개선의 여지가 있는 것으로 보임.
 - · 주요 선진 건설국과 우리나라의 전반적인 생산성 차이를 극복하기 위해서는 성공 사례에서 도출된 공정 혁신의 요인들을 국내 산업 차원으로 확대하고 전파하는 것이 필요할 것임.
 - ·사업 성과를 객관적으로 측정할 수 있는 사후 평가 시스템의 개발 및 활용이 요구되며, 이를 통해 발굴한 모범 사례(best practice)를 체계적으로 축적하여 보급할 수 있는 데이터베이스가 구축되어야 함.

□ 생산 프로세스 전반의 혁신

- 사업 수행 방식 선정에 있어 공기 단축에 유리한 발주 및 조달 방식의 활용은 공정 단축의 효과는 물론이고, 사업비 절감에 기여할 수 있는 것으로 결론내릴 수 있음.

- · 혁신적인 수준의 공기 단축 결과를 거둔 건축, 토목, 플랜트 사업에서 주목해야 될 공통점은 조사 대상 사업들이 모두 설계 시공 일괄 발주 및 패스트 트랙 방식을 통해 수행된 점임.
- · 시공 단계에서의 일부 공종과 작업을 대상으로 하는 공기 단축 시도가 아니라, 프로 젝트 라이프 사이클 전 기간을 대상으로 하는 사업 기간의 단축이 그 효과를 최대화할 수 있음을 시사함.
- ·설계 시공 일괄 발주 및 패스트 트랙 방식은 사업 기간의 단축은 물론, 사업 주체 및 단계간 통합에 유리하여 생산 프로세스 전반의 최적화에 기여한 것으로 파악됨.
- 설계 및 생산 방식 측면에서 공기 단축에 성공한 사례들은 기존의 관행적 설계 기술 및 시공 공법을 대신해 새로운 접근을 시도한 혁신성을 공통적으로 보였음.
 - ·성공 사례에서는 부재 설계 및 공법 선정 과정에서 현장 시공성 및 공기 단축 가능성을 최우선적으로 고려한 설계 개념이 적용됨.
 - · 시공 공정 사이클을 단축하기 위해 시설물의 모듈화, 부재 규격의 표준화, 부재 규모 의 대형화 등이 설계 단계에서부터 추진되었음.
 - · 시공 물량이 많거나 주공정선에 위치한 선행 공종의 경우 공장 선제작 후 현장 설치 방식이나 부재의 자동화 생산 시스템을 자체 개발하는 등 작업 속도를 가속화하였음.
 - ·기존의 선형적인 작업 수행 방식을 탈피해 병행 가능한 작업은 모두 병행화하는 전략이 적극적으로 고려되었음.
- 관리 방식 측면에서 성공 사례들은 발주자의 공기 단축에 대한 명확한 의지가 표명되었고, 선진화된 건설 관리 기법과 이를 지원할 전산 시스템을 구축하였음.
 - ·성공 사례는 모두 패스트 트랙 방식으로 수행되었기 때문에 설계 및 시공 계약 패키지의 구분, 공종별 간섭 사항 관리, 설계 및 시공 일정 통합 관리 등의 전문화된 사업관리 역량 등이 필수적으로 요구되었음.
 - · 발주자 PM 전담 조직 구성이나 외부 사업관리 전문 조직의 용역에 의해 강력한 공기 단축 수행 환경을 조성하여 직간접적으로 생산 주체를 지원하였음.

V. 맺음말

□ 수요자 측면: 발주자의 공기 단축 의지와 지원이 필수

- 건설 사업의 공정 혁신은 발주자의 역량과 공기 단축 의지에서 시작된다고 볼 수 있으며, 시의적절한 의사결정과 투입 자원 지원이 뒷받침되어야 함.
 - ·건설 사업의 선수요 및 후공급 특성으로 발주자가 요구하는 수준 이상의 일정, 가격, 성능 목표는 달성될 수 없기 때문임.
 - ·성공 사례 분석에서도 발주자의 공기 단축 확약, 적절한 발주 및 조달 방식의 활용, 사업 관리의 전문화 등에 따라 공기 단축 수준이 달라짐이 입증되었음.
 - ·선진국에서 활용되고 있는 공기단축형 입찰방식(Cost-Plus-Time 또는 A+B 계약 방식)의 도입을 통해 발주자 및 사용자의 이익은 물론이고 건설 생산 주체의 공정 관리 역량 고도화와 신기술 및 신공법의 개발과 적용을 유도할 수 있을 것임.
 - ·사업 집행 과정에서도 예산 배정의 원활성, 과업 범위의 고정, 인허가 관련 대관 업무 등의 지원이 필요함.

□ 공급자 측면: 기업 경영 차원의 공정 혁신 전략 수립 필요

- 향후 건설 사업의 경쟁력은 차별화된 공정 프로세스 관리 역량에 달려 있음을 인식하고, 기업 경영 차원에서 주력 상품별 공정 혁신 전략이 수립되어야 함.
 - · 일회성 프로젝트 차원의 기술 개발과 확보는 제약이 있으므로 본사 차원에서 공정 혁신을 위한 구체적인 비즈니스 모델이 전략적으로 구축되어야 함.
 - · 공정 단축에 절대적인 영향을 끼칠 수 있는 설계 및 엔지니어링 요소 기술의 개발도 중요하지만, 건설 생산 시스템의 전반에 걸친 공정 혁신은 비기술적 관리 요소의 변화를 통해 가능함을 주목해야 함.

김원태(연구원 · wontkim@cerik.re.kr) 이영환(연구위원 · yhlee@cerik.re.kr)