New Trends for Project Delivery Methods in the United States

G. Edward Gibson Jr.
W. R. Woolrich Professor of Engineering
The University of Texas at Austin

Friday, October 14, 2005

1

"...design-build systems have significantly less design and construction cost growth when compared to design-bid-build; that design-bid-build systems have the greatest design and construction schedule growth; and that quality measurements associated with design-build, often maligned by many, is better that quality performance of design-bid-build."

- CII RS 133-1, 1997

Friday, October 14, 2005

Agenda

- Introduction
- Procurement Methods
- Selected Studies
- Research in Progress
- Conclusions and Recommendations

Friday, October 14, 2005

2

Agenda

- Introduction
- Procurement Methods
- Selected Studies
- Research in Progress
- Conclusions and Recommendations

Friday, October 14, 2005

Δ

Trends and Drivers (1)

Trends:

- Better understanding of benefits of different delivery systems
- "Opening" of Federal and State procurement rules
- Move by all owners to more alternative delivery systems (not just Design-Bid-Build (D-B-B))
- Promulgation by organizations such as the Design Build Institute of America (DBIA)

Friday, October 14, 2005

5

Trends and Drivers (2)

Drivers:

- Concurrence with new financing methods on public projects
- Loss of owner expertise
- Growing backlog of infrastructure needs (hence "need for speed")
- Large volume of work
- Active promotion by industry organizations
- Benefits of design and construction collaboration

Friday, October 14, 2005

Agenda

- Introduction
- Procurement Methods
- Selected Studies
- Research in Progress
- Conclusions and Recommendations

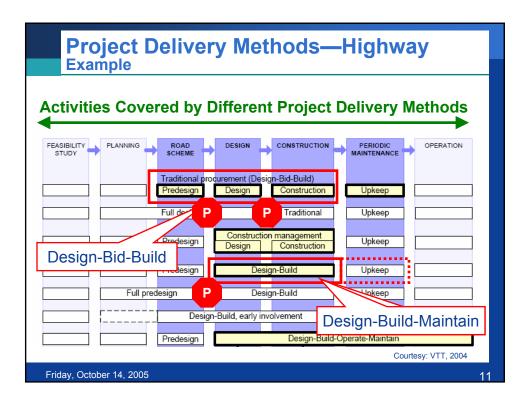
Friday, October 14, 2005

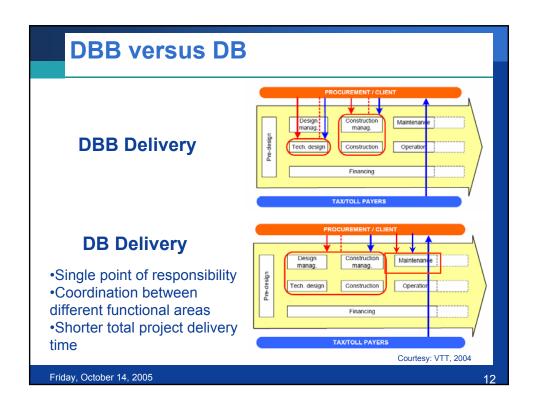
7

Typical Delivery Methods in US

- Design-Bid-Build (D-B-B); traditional
- Construction Manager as Agent (CM-A)
- Construction Manager at Risk (CM@Risk)
- Multi-Prime, Fast Track
- Design-Build (D-B)
- Design-Build-Operate-(Maintain) (D-B-O or D-B-O-M)

Friday, October 14, 2005


g


Price ■ Low-Bid ■ Best Value (1 or 2 steps) ■ Negotiated selection Quality Molenaar and Gransberg, 2001

Procurement Phase

- Phase of the project's life cycle
- Project delivery method drives number procurement activities
- Select an entity for performing tendered services
- Leads to delay, good or bad

Friday, October 14, 2005

Agenda

- Introduction
- Procurement Methods
- Selected Studies
- Research in Progress
- Conclusions and Recommendations

Friday, October 14, 2005

1:

Project Delivery Systems: CM at Risk, Design-Build, Design-Bid-Build (CII 1997)

Friday, October 14, 2005

Research Background

- Study of D-B, D-B-B, and CM at Risk
- 350 sample projects
- Several types of facilities, e.g., buildings, light industrial, heavy industrial
- Data collected included cost, time, quality, scope, and lessons learned

Friday, October 14, 2005

15

Cost, Schedule and Quality Metrics

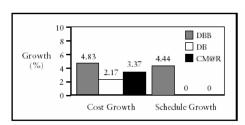


Figure 4.1. Summary of Principal Metrics

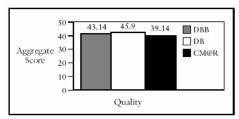


Figure 4.2. Summary of Principal Metrics (continued)

Friday, October 14, 2005

Speed

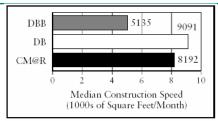


Figure 2.7. Construction Speed
Construction Speed (Sq. Rt./Mo.) = [Area/(Construction As Built Time/30)]

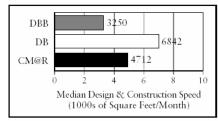


Figure 2.8. Design and Construction Speed
Design & Construction Speed (Sq. Ft./Mo.) = [Area/(Total As Built Time/30)]

Friday, October 14, 2005

17

An Empirical Comparison of Design/Build and Design/Bid/Build Project Delivery Methods

Hale 2005

Friday, October 14, 2005

Study Details

- Navy Facilities Command (NAVFAC)
- Enlisted quarters (housing)
- Large sample of D-B (38) and D-B-B (39) projects
- Completed during the same time frame (1995-2004)
- Comparisons based on cost (relative and real), time, and changes

Friday, October 14, 2005

10

Results (sample averages) (1)

- Design and construction duration
 - D-B: 667 calendar days
 - D-B-B: 1398 calendar days
- Duration per bed, design and construction
 - D-B: 2.64 days per bed
 - D-B-B 7.00 days per bed
- Duration for construction
 - D-B: 667 days
 - D-B-B: 771 days

Friday, October 14, 2005

Results (sample averages) (2)

Cost growth

• D-B: 2.00%

• D-B-B: 4.02%

Cost per bed

• D-B: \$57,776

• D-B-B: \$67,152

Friday, October 14, 2005

91

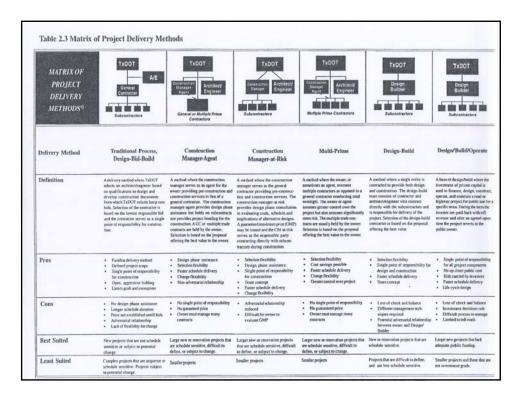
Summary Statistics

Statistics	Design/Build	Design/Bid/Build		
Project Duration -Total Project Duration -Fiscal Year Duration -Project/Construction Start Duration	667 days* 864 days* 667 days*	1398 days 1026 days 771 days		
Project Duration per Bed -Total Project Duration -Fiscal Year Duration -Project/Construction Start Duration	2.64 days/bed* 3.55 days/bed* 2.64 days/bed*	7.00 days/bed 5.08 days/bed 3.70 days/bed		
Time Growth	76.39 days*	193.85 days		
Cost per Bed with Other Costs	\$60,909	\$69,760		
Cost per Bed	\$57,776	\$67,152		
Cost Growth	2.00%*	4.02%		

^{*} Statistically significant at p < 0.05

Friday, October 14, 2005

TxDOT Delivery Methods Study (project 0-2129, 2001)


Friday, October 14, 2005

2:

Research objectives

- Identify and determine the benefits of innovative project delivery methods and contracting approaches
- Evaluate current legal climate in terms of choosing these strategies
- Develop implementing procedures for methods available or under development
- Prepare recommendations and guidelines as needed

Friday, October 14, 2005

Findings

- Outlined project delivery methods (CM-A, CM @Risk, D-B-B, D-B, D-B-O, etc.)
- Explored innovative contracting methods available (A + B, Lane Rental, Warranty, Partnering, No-Excuse Incentives, etc)
- Developed D-B Manual

Recommendations

- 1. Develop D-B process guidelines and a delivery process (planning, scope, RFP, selection, management, etc.).
- 2. Assess the availability of the skills required
- 3. Train selected members of the organization in the use of the D-B project delivery system.
- 4. Optimize communication among the parties involved within organization on changes.
- 5. Optimize the front end planning process.
- Select pilot D-B projects that have a relatively certain scope and contain well-known processes and technologies.
- 7. Ensure selection of qualified D-B contractors.
- 8. Develop succinct criteria specifications.
- 9. Develop a systematic way to evaluate project results.

Friday, October 14, 2005

2

SH 130 Study UT-Austin, CTR

Friday, October 14, 2005

- Five new toll-roads:
 - SH130
 - SH45 N
 - SH45 SE
 - US183A
 - Loop 1 extension

Friday, October 14, 2005

20

State Highway 130 (1/2)

- Backbone of the Central Texas Turnpike
- Designed to alleviate Austin traffic by diverting traffic away from city
- First project in Texas being delivered under the CDA statutory approach
 - Use of Design-Build-(Maintain) delivery method
 - 15-years maintenance option to be exercised
 6 months before completion

Friday, October 14, 2005

State Highway 130 (2/2)

Project Characteristics

- 4-lanes x 91 miles (NTP issued for 49 miles)
- 119 bridges & 4 major interchanges
- 408 required ROW parcels
- 310 utility adjustments

Cost

- Design, Construction, ROW services and Utility Adjustments
 - \$1.3 billion (NTP issued for \$1 billion)
- ROW acquisition: \$380 million

Schedule

 5 years for design, acquire ROW, relocate utilities and construct the facility

Friday, October 14, 2005

Q

Research Objectives (Began 2004)

- Identify opportunities for streamlining procurement process
- Identify essential elements for D-B contracts
- Analyze teams' organizational and communication structures
- Develop and implement a performance benchmarking program
- Develop and populate lessons-learned system
- Organize annual workshop to showcase innovations

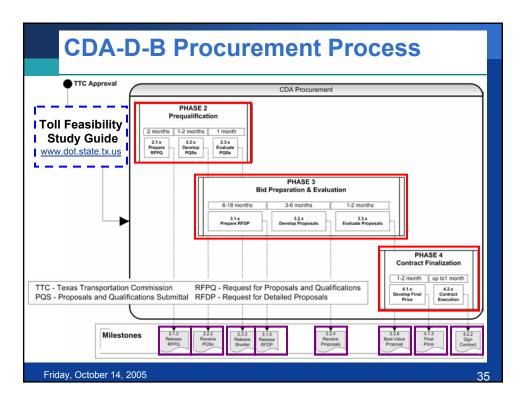
Friday, October 14, 2005

Research Objectives (Began 2004)

- Identify opportunities for streamlining procurement process
- Identify essential elements for D-B contracts
- Analyze teams' organizational and communication structures
- Develop and implement a performance benchmarking program
- Develop and populate lessons-learned system
- Organize annual workshop to showcase innovations

Friday, October 14, 2005

33


Research Motivations

- Primary reason to select D-B vs. D-B-B
 - Shorter total project delivery time
- Increasing adoption of D-B by state transportation departments (DOTs)
- No widespread culture of the new approach in DOTs
- Procurement phase duration

Friday, October 14, 2005

Phase 2 Prequalification

- Prepare Request for Proposals and Qualifications (RFPQ)
 - 2 months
 - Develop evaluation process
 - Release RFPQ package
- Develop Proposal and Qualification Submittal (PQS)
 - 1-2 months
 - Interact with firms in PQS development
 - Receive PQS
- Evaluate PQS
 - 1 month
 - Evaluate PQS
 - Shortlist qualified proposers

Friday, October 14, 2005

Phase 3 Bid Preparation and Evaluation

Prepare Request for Detailed Proposals (RFDP)

- 6-18 months
- Develop evaluation process
- Release RFPQ package

Develop Proposals

- 3-6 months
- Interact with firms in proposal development
- Receive Proposals

Evaluate Proposals

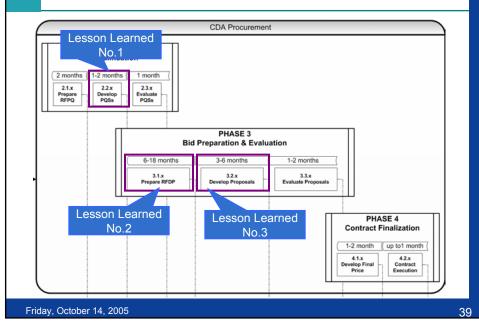
- 1-2 months
- Evaluate Proposals
- Select the firm offering the best-value to the State

Friday, October 14, 2005

3

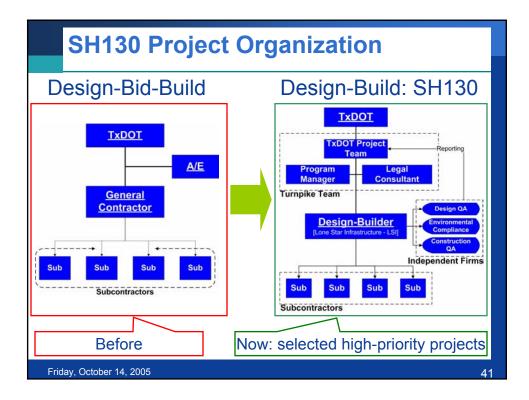
Phase 4 Contract Finalization

Develop Final Price (optional)


- 1-2 months
- Acquire Alternative Technical Concepts (ATC) from unsuccessful proposers
- Negotiate post-proposal ATC with selected developer
- Develop Final Price

Contract Execution

- Up to 1 month
- Finalize details of agreement with Developer
- Sign Contract


Friday, October 14, 2005

Selected Lessons Learned

Conclusions (1)

- Laid down a detailed D-B procurement process
 - Up to 69 activities
 - 8 milestones
- Draft CDA Procurement Process Manual
- Process streamlined by using lessons-learned
 - SH130 procurement 33 months
 - Developed process 12 to 29 months depending by project complexity
- Identified lessons learned

Conclusions (2)

- Co-location allows to optimize communications
- Flexible organizational structures improve communications
- Overall communications between Owner and service providers are simpler
- A formal partnering approach is beneficial in regulating communication flows

Friday, October 14, 2005

CII Project Delivery and Contract Strategy (PDCS) Study 2001

Friday, October 14, 2005

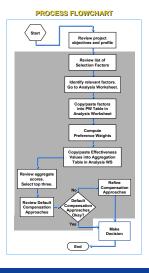
4:

PDCS Procedure

- Focuses on owner's project objectives.
- Focuses on project execution environment.
- Incorporates quantitative assessment of PDCS alternatives in decision support tool.

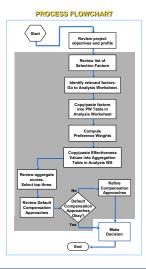
Research

Research conducted with:


- CII members, non-members
- Owners and contractors
- Public agencies
- Industrial and general building sectors

PDCS Definition

- Defines roles and responsibilities of parties in a project.
- Defines how owner pays for services.
- Establishes framework for organization of project execution.


PDCS – Typical Representation Traditional Design-Bid-Build delivery system, PDCS 01 Phase Sequence: Serial sequence of design and construction (Procurement begins with construction) Design **Procure Project Team Relationships Primary Contractual/Functional Relationships Owner Designer** Constructor **Compensation Approaches** Designer: **Firm Price** Constructor: **Competitive Lump Sum**

PDCS Decision Support Tool (1)

- Review project objectives.
- Identify selection factors (related to owner's project objectives).
- Assign preference rank and preference weights to selected factors to reflect priority.

PDCS Decision Support Tool (2)

- Paste effectiveness values into aggregate table.
- Obtain aggregate scores from spreadsheet.
- Review results to make final decision.
- Choose from 20 selection factors, 12 PDCS alternatives.

PDCS Decision Support Tool (3)

Factor Number	Selection Factor	Factor Description for Comparing	Factor Action Statement
1	Completion within original budget is critical to project success	Delivery system facilitates control of cost growth	Control cost growth
7	Early completion is critical to project success	Delivery system ensures shortest reasonable schedule	Ensure shortest schedule
17	Project features are well defined at the award of the design and/or construction contract construction	Delivery system capitalizes on well defined project scope prior to award of design and/or	Capitalize on well defined scope

PDCS Decision Support Tool (4)

Table A-1: Compute Preference Weights

Factor Action Statement	Preference Rank	Preference Scores Weight	Normalized Preference
Control time growth	1	100	0.33
Protect confidentiality	2	80	0.27
Capitalize on familiar project conditions	3	60	0.20
Maximize owner's involvement	4	40	0.13
Efficiently coordinate project complexity or innovation	5	20	0.07
		300	

Friday, October 14, 2005

51

PDCS Decision Support Tool (5) Table A-2: Compute Aggregate Scores

PDCS Alternatives	Factor -		+	Control time growth	Protect confidentiality	Capitalize on familiar project conditions	Maximize owner's involvement	vner's project EMPTY complexity or Ag	Aggregate Score	
Preference Weight			0.33	0.27	0.20	0.13	0.07	0.00	↓	
PDCS 01				20	90	0	80	70		46.00
PDCS 02				50	90	50	90	60		66.67
PDCS 03				20	70	0	80	50		39.33
PDCS 04		/alues		20	70	0	80	40		38.67
PDCS 05		eness /		50	70	40	80	40		56.67
PDCS 06		Predetermined Effectiveness Values (Table EV-1)		70	70	70	40	70		66.00
PDCS 07		mined Effe (Table I		90	0	100	10	100		58.00
PDCS 08		edeten		80	40	90	30	80		64.67
PDCS 09		ā.		0	100	80	100	0		56.00
PDCS 10				0	60	10	30	0		22.00
PDCS 11				100	0	100	0	90		59.33
PDCS 12				80	80	70	100	80		80.67

Friday, October 14, 2005

Benefits of the Tool

- Relates PDCS to project objectives and success parameters.
- Provides a decision support tool to facilitate selection of most suitable PDCS.
- Expands knowledge base with welldefined, documented PDCS alternatives.
- Provides rationale for selecting PDCS, based on quantification of alternatives.

Agenda

- Introduction
- Procurement Methods
- Selected Studies
- Research in Progress
- Conclusions and Recommendations

Transition to proficiency

- Develop process guidelines and a delivery process for each option
- Assess the availability of the skills required for the use of alternative delivery methods
- Train selected members of the organization in the use of these methods
- Optimize communication among the parties involved within the organizations
- Optimize the front end planning process

Friday, October 14, 2005

5!

Transition to proficiency

- Select pilot applications of these different methods for projects that have a relatively certain scope and contain well-known processes and technologies
- Ensure selection of qualified contractors
- Develop succinct criteria specifications
- Develop a systematic way to evaluate project results – measure and compare

Friday, October 14, 2005

Recommendations

- Innovative contracting approaches should be pursued
- Each approach has advantages and disadvantages
- Develop a systematic process to evaluate project delivery methods and contracting approaches
- Budget the necessary resources to adequately prepare staff
- Develop metrics

Friday, October 14, 2005

57

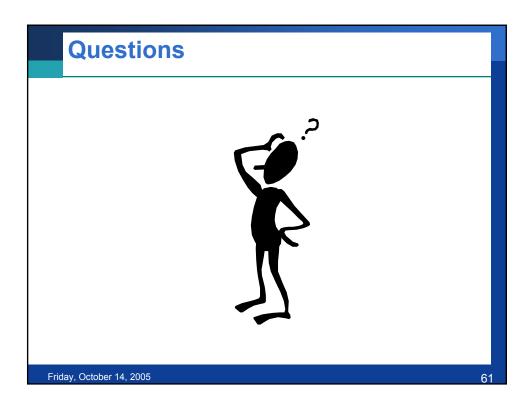
A new paradigm

- Need for comprehensive assessment of project delivery methods and contracting approaches
- Design-build is not the only approach beyond design-bid-build
 - TxDOT moving to Concession/D-B-O-M
- Owners need to assess the realm of project delivery methods as well as the contracting approaches available

Friday, October 14, 2005

References

- Construction Industry Institute (CII) (1997). "Project Delivery Systems: CM at Risk, Design-Build, Design-Bid-Build," Research Summary 133-1, University of Texas at Austin.
- Hale, D. (2005). "An Empirical Comparison of Design/Build and Design/Bid/Build Project Delivery Methods," MS Thesis, UT-Austin
- Gibson, G. E. and Walewski, J. (2001). "Project Delivery Methods and Contracting Approaches: Assessment and Design-Build Implementation Guidance," Research Report Number 2129-P1, Center for Transportation Research, August.
- Walewski, J., Gibson, G. E. and Jasper, J. (2001). "Project Delivery Methods and Contracting Approaches Available for Implementation by the Texas Department of Transportation," Research Report Number 2129-1, Center for Transportation Research, 68 pp., October.
- O'Connor, J.T., Gibson, G. E. and Migliaccio, G. (2004). "CDA Procurement Process Model," Research Report Number 0-4661-P1, Center for Transportation Research, August (published April 2005).


Friday, October 14, 2005

50

References

- O'Connor, J.T., Gibson, G. E. and Migliaccio, G. (2004). "Essential Elements of CDA Master Contract," Research Report Number 0-4661-P2, Center for Transportation Research, August (published April 2005).
- O'Connor, J.T., Gibson, G. E. and Migliaccio, G. (2004). "R1 2004 Annual Interim Report, Monitoring and Evaluation of SH 130 Project Construction," Annual Interim Report Number 0-4661-1, Center for Transportation Research, October.
- Construction Industry Institute (2001). "Owner's Tool for Project Delivery and Contract Strategy Selection," Research Summary 165-1, University of Texas at Austin.

Friday, October 14, 2005

